

Pulse encoder connection

Connecting a pulse encoder to the DCS800 converter

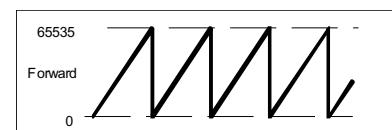
The connection diagram for a pulse encoder to the electronics of a DCS converter is quite similar, if the SDCS-CON-4 or the SDCS-IOB-3 is used. The basic difference between these 2 boards is the galvanically isolated circuit and pulse receivers via opto coupler on the SDCS-IOB-3 board.

Power supply for incremental encoder

SDCS-CON-4 and SDCS-IOB-3 board have jumpers to select a supply voltage. V17 LED on SDCS-IOB-3 indicates supply is OK.

Hardware configuration			
Encoder supply	SDCS-CON-4 supplied by PIN-4	SDCS-CON-4 supplied by POW-1/POW-4	SDCS-IOB-3
5 V	sense controlled	sense controlled	sense controlled
12 V	-	no sense	sense controlled
24 V	no sense	no sense	no sense

Sense feedback connection is recommended when power supply level for differential pulse encoder is 5 V. The wiring is shown on figure below.



Commissioning hint

Note:

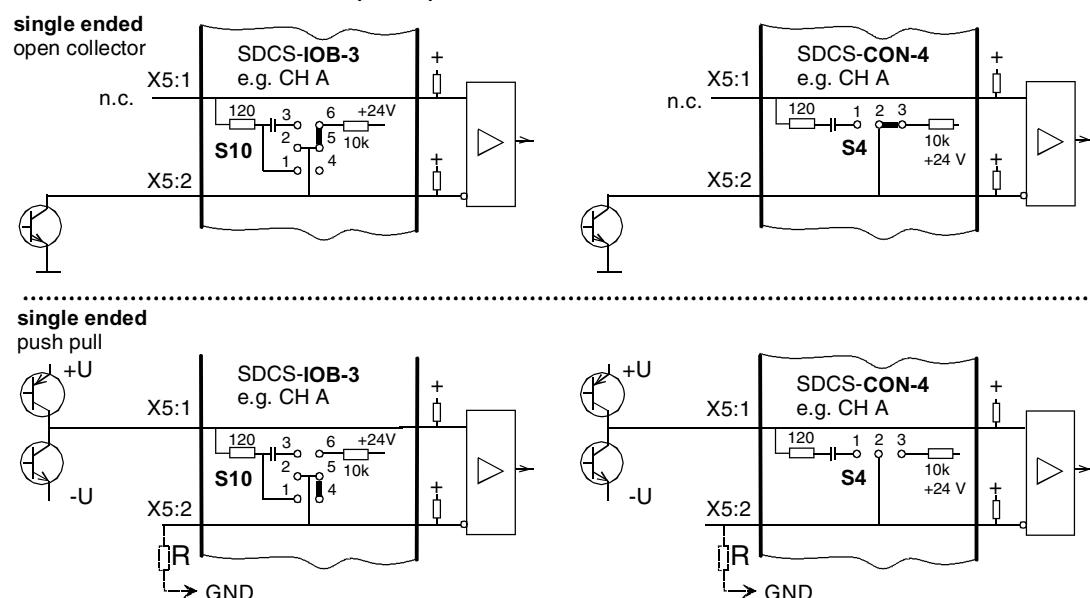
If the drive's direction of rotation is correct (if necessary, correct by exchanging the field connections), the **Tacho error** message may appear during start-up.

If with a positive reference the TACHO_PULSES signal does not look like the illustration below, then tracks A & \bar{A} must be mutually exchanged with encoders with inverted signals, and tracks A and B with encoders without inverted signals.

If the TACHO_PULSES signal is missing or non-linear, the encoder's pulses are not being read correctly. Possible reasons for this may be the encoder supply, the encoder itself, or the wiring.

Pulse encoder receiver

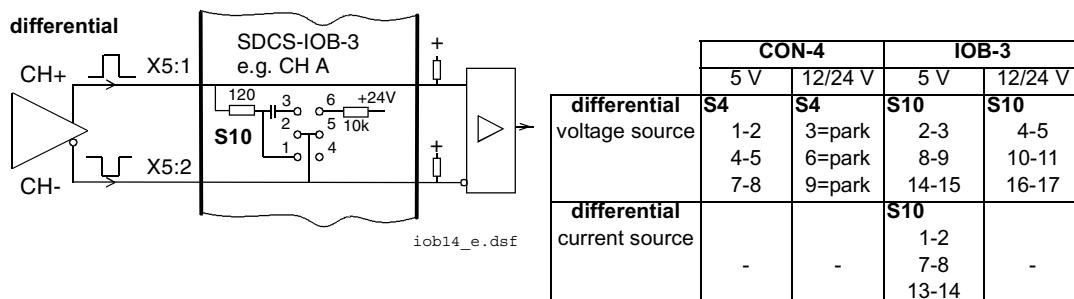
Two different incremental encoder connections are available.


-differential connection; pulse encoders generating either voltage or current signals can be used

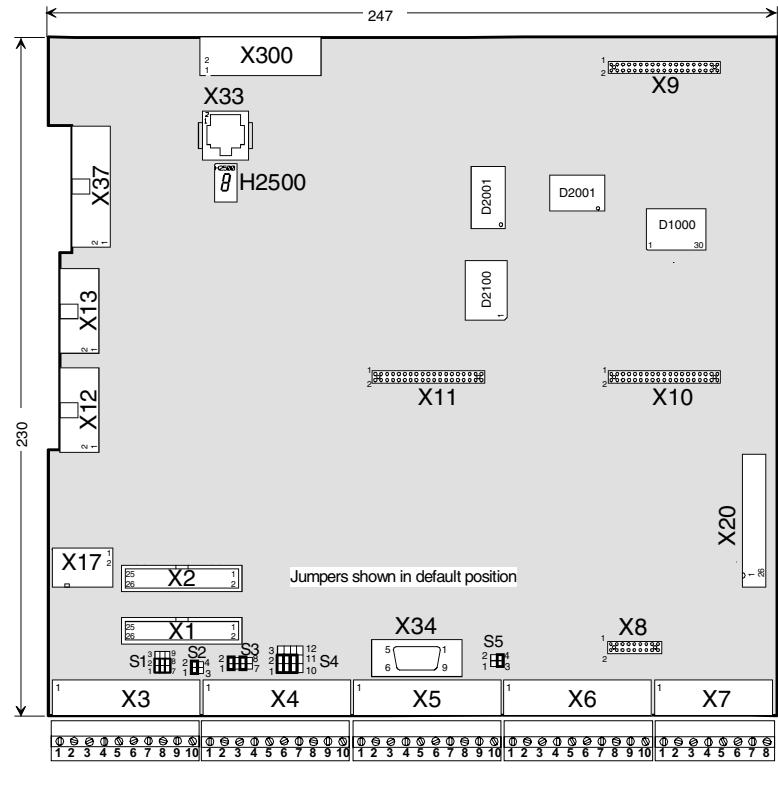
-single-ended (push pull) connection; voltage signals

Restrictions using jumper S4 (CON-4): or S10 (IOB-3): depending on the board

Line termination via S4/S10 should not be used at 12 V or 24 V encoders, because of the power consumption taken from the encoder. If a pulse encoder with a build in current source is used a burden resistor of 120Ω is activated via jumper S4/S10: 1-2 a.s.o.


Pulse encoder connection principles

In case of a single ended 5 V encoder the jumpers S4 / S10 will be set to a neutral position. To get a threshold lower than 5 V each terminal X5:2 / X5:4 / X5:6 must be connected via a resistor R to GND according to the table below.


R	1 kΩ	1.5 Ω	2.2 kΩ
U thresh	1.2 V	1.8 V	2.3 V

Make sure the threshold is half of the supply voltage and the minimum voltage of the encoder output (saturation voltage UCE of a transistor).

Control Board SDCS-CON-4

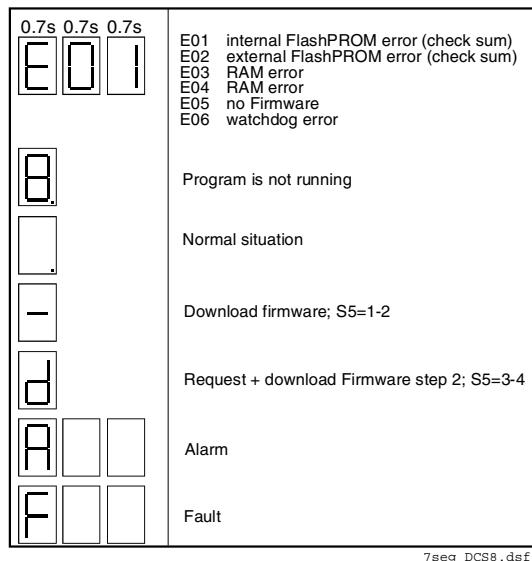
Layout of the control board SDCS-CON-4

Memory circuit

SDCS-CON-4 board is equipped with FlashPROM which contains the firmware plus the stored parameters. Parameters handled by DCS800 panel or DWL, PCtool or by Serial communication parameter service are stored immediately in the FlashPROM.

Parameters handled by cyclic serial communication (dataset table Group 90 - 92) are not stored in the Flash PROM. They must be stored by means of ParApplSave (16.6) service.

The faultlogger entries are stored in the FlashPROM during power down (auxiliary power supply OFF).


Watchdog function

The control board has an internal watchdog. The watchdog controls the running of the control board program. If the watchdog trips, it has the following effects:

- Writing to FPROM is disabled.
- Thyristor firing control is reset and disabled.
- Digital outputs are forced low.
- Programmable analogue outputs are reset to zero, 0V.

Seven segment display

A seven segment display is located on the control board SDCS-CON-4 and it shows the state of drive.

7seg_DCS8.ds1

Terminal description

X37: Connector is used for supply of SDCS-CON-4 from SDCS-POW-1, SDCS-POW-4, SDCS-PIN-4 supply voltage can be measured to ground.

X37:3= 48V

X37:5=24V

X37:7=15V

X37:11=-15V

X37:13=5V encoder

X37:23=5V CPU

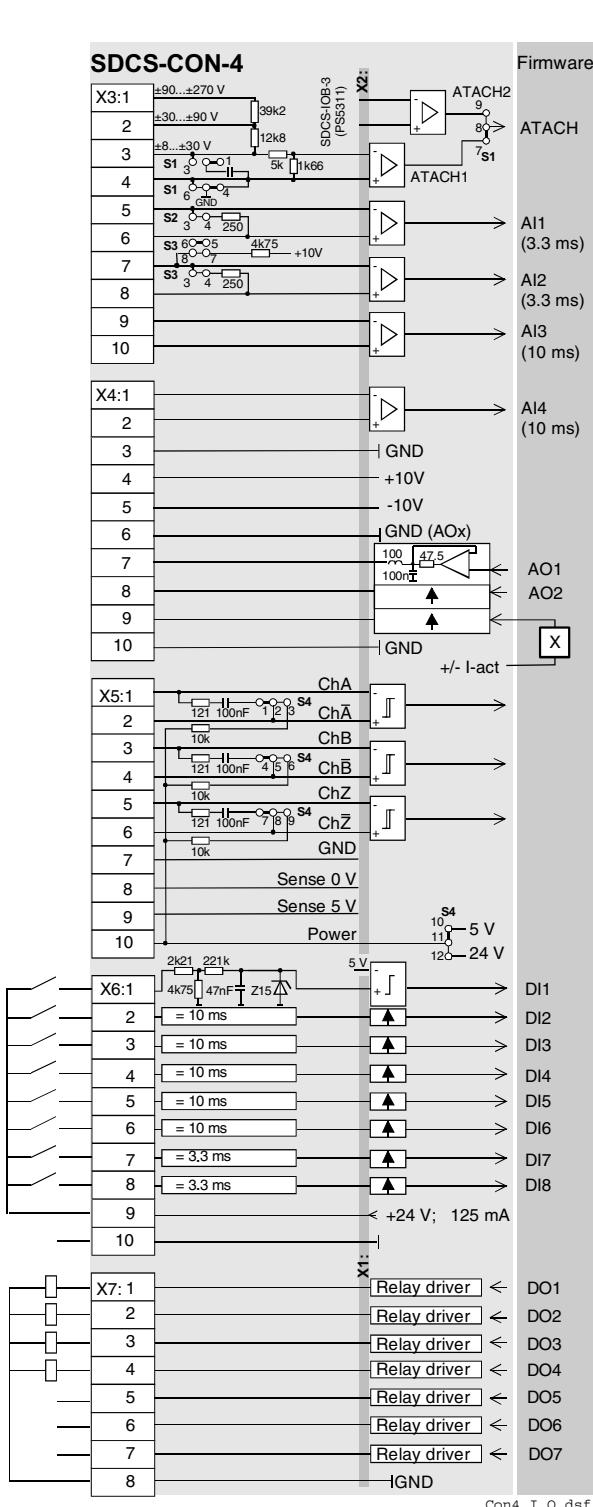
Supply voltage monitoring

5V CPU is monitored by 4.75 V and forces CPU to reset. In parallel the CPU monitors Powerfail signal from power supply (SDCS-PIN-4 or SDCS-POW-1).

X12: and **X13:** connector are used for measurement voltage, current and temperature and firing thyristors of SDCS-PIN-51/PIN-41, SDCS-PIN-4.

see chapter *Technical data*

X17: and **X300:** are routine test connectors.


X1: and **X2:** are used to connect SDCS-IOB-2 and SDCS-IOB-3 board.

see chapter *Technical data*

X33: is used to connect DCS800 Panel. It can be connected direct via 40 mm jack or via CAT 1:1 cable (RJ45).

X34: is used for download firmware and for DWL and IEC1131 programming connection.

Digital and analogue I/O connection of the SDCS-CON-4

Resolution [bit]	Input/output values Hardware	Scaling by	Common mode range	Remarks
15 + sign	±90...270 V ±30...90 V ±8...30 V	Firmware	±15 V	
15 + sign	-10...0...+10 V	Firmware	±15 V	
15 + sign	-10...0...+10 V	Firmware	±15 V	
15 + sign	-10...0...+10 V	Firmware	±15 V	
15 + sign	-10...0...+10 V	Firmware	±15 V	

		Power	
	+10 V	≤ 5 mA	for ext. use
	-10 V	≤ 5 mA	e.g. refer. pot.
11 + sign	-10...0...+10 V	Firmware	≤ 5 mA
11 + sign	-10...0...+10 V	Firmware	≤ 5 mA
	-10...0...+10 V	Firmware	≤ 5 mA
	+ Hardw.		3 V -> nom. ??
			motor curr.

Encoder supply	Remarks
5 V 24 V	Inputs not isolated Impedance = 120 Ω, if selected max. frequency ≤300 kHz ≤ 250 mA ≤ 200 mA

Input value	Signal definition by	Remarks
0...7.3 V 7.5...50 V	Firmware	-> "0" status -> "1" status

Output value	Signal definition by	Remarks
50 * mA 22 V at no load	Firmware	Current limit for all 7 outputs = 160 mA Do not apply any reverse voltages!

* short circuit protected ① gain can be varied in 15 steps between 1 and 4 by software parameter